Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Mol Ther ; 32(3): 619-636, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38310355

RESUMO

Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Animais , Camundongos , Mucopolissacaridose II/terapia , Mucopolissacaridose II/tratamento farmacológico , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Terapia Genética , Sistema Nervoso Central/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Células-Tronco Hematopoéticas/metabolismo
2.
Biochem Biophys Res Commun ; 696: 149490, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38241811

RESUMO

The Lysosomal Storage disease known as Mucopolysaccharidosis type II, is caused by mutations affecting the iduronate-2-sulfatase required for heparan and dermatan sulfate catabolism. The central nervous system (CNS) is mostly and severely affected by the accumulation of both substrates. The complexity of the CNS damage observed in MPS II patients has been limitedly explored. The use of mass spectrometry (MS)-based proteomics tools to identify protein profiles may yield valuable information about the pathological mechanisms of Hunter syndrome. In this further study, we provide a new comparative proteomic analysis of MPS II models by using a pipeline consisting of the identification of native protein complexes positioned selectively by using a specific antibody, coupled with mass spectrometry analysis, allowing us to identify changes involving in a significant number of new biological functions, including a specific brain antioxidant response, a down-regulated autophagic, the suppression of sulfur catabolic process, a prominent liver immune response and the stimulation of phagocytosis among others.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Mucopolissacaridose II/genética , Proteômica , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Glicosaminoglicanos/metabolismo , Encéfalo/metabolismo
3.
Mol Genet Metab ; 140(3): 107652, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37506513

RESUMO

BACKGROUND: Mucopolysaccharidosis II (MPS II) is a rare, X-linked lysosomal storage disease caused by pathogenic variants of the iduronate-2-sulfatase gene (IDS) and is characterized by a highly variable disease spectrum. MPS II severity is difficult to predict based on IDS variants alone; while some genotypes are associated with specific phenotypes, the disease course of most genotypes remains unknown. This study aims to refine the genotype-phenotype categorization by combining information from the scientific literature with data from two clinical studies in MPS II. METHODS: Genotype, cognitive, and behavioral data from 88 patients in two clinical studies (NCT01822184, NCT02055118) in MPS II were analyzed post hoc in combination with published information on IDS variants from the biomedical literature through a semi-automated multi-stage review process. The Differential Ability Scales, second edition (DAS-II) and the Vineland Adaptive Behavior Scales™, second edition (VABS-II) were used to measure cognitive function and adaptive behavior. RESULTS: The most common category of IDS variant was missense (47/88, 53.4% of total variants). The mean (standard deviation [SD]) baseline DAS-II General Conceptual Ability (GCA) and VABS-II Adaptive Behavior Composite (ABC) scores were 74.0 (16.4) and 82.6 (14.7), respectively. All identified IDS complete deletions/large rearrangements (n = 7) and large deletions (n = 1) were associated with a published 'severe' or 'predicted severe' progressive neuronopathic phenotype, characterized by central nervous system involvement. In categories comprising more than one participant, mean baseline DAS-II GCA scores (SD) were lowest among individuals with complete deletions/large rearrangements 64.0 (9.1, n = 4) and highest among those with splice site variants 83.8 (14.2, n = 4). Mean baseline VABS-II ABC scores (SD) were lowest among patients with unclassifiable variants 79.3 (4.9, n = 3) and highest among those with a splice site variant 87.2 (16.1, n = 5), in variant categories with more than one participant. CONCLUSIONS: Most patients in the studies had an MPS II phenotype categorized as 'severe' or 'predicted severe' according to classifications, as reported in the literature. Patients with IDS complete deletion/large rearrangement variants had lower mean DAS-II GCA scores than those with other variants, as well as low VABS-II ABC, confirming an association with the early progressive 'severe' (neuronopathic) disease. These data provide a starting point to improve the classification of MPS II phenotypes and the characterization of the genotype-phenotype relationship.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Mucopolissacaridose II/genética , Mutação , Iduronato Sulfatase/genética , Genótipo , Gravidade do Paciente , Adaptação Psicológica
4.
AAPS J ; 25(4): 61, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340133

RESUMO

Mucopolysaccharidosis type II, commonly called Hunter syndrome, is a rare X-linked recessive disease caused by the deficiency of the lysosomal enzyme iduronate-2-sulphatase (I2S). A deficiency of I2S causes an abnormal glycosaminoglycans accumulation in the body's cells. Although enzyme replacement therapy is the standard therapy, adeno-associated viruses (AAV)-based gene therapy could provide a single-dose solution to achieve a prolonged and constant enzyme level to improve patient's quality of life. Currently, there is no integrated regulatory guidance to describe the bioanalytical assay strategy to support gene therapy products. Herein, we describe the streamlined strategy to validate/qualify the transgene protein and its enzymatic activity assays. The method validation for the I2S quantification in serum and method qualification in tissues was performed to support the mouse GLP toxicological study. Standard curves for I2S quantification ranged from 2.00 to 50.0 µg/mL in serum and 6.25 to 400 ng/mL in the surrogate matrix. Acceptable precision, accuracy, and parallelism in the tissues were demonstrated. To assess the function of the transgene protein, fit-for-purpose method qualification for the I2S enzyme activity in serum was performed. The observed data indicated that the enzymatic activity in serum increased dose-dependently in the lower I2S concentration range. The highest I2S transgene protein was observed in the liver among tissue measured, and its expression level was maintained up to 91 days after the administration of rAAV8 with a codon-optimized human I2S. In conclusion, the multifaceted bioanalytical method for I2S and its enzymatic activity were established to assess gene therapy products in Hunter syndrome.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Animais , Camundongos , Mucopolissacaridose II/terapia , Mucopolissacaridose II/tratamento farmacológico , Ácido Idurônico , Qualidade de Vida , Iduronato Sulfatase/genética , Iduronato Sulfatase/uso terapêutico , Terapia Genética , Terapia de Reposição de Enzimas/métodos
5.
Sci Rep ; 13(1): 10289, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357221

RESUMO

Multiple complex intracellular cascades contributing to Hunter syndrome (mucopolysaccharidosis type II) pathogenesis have been recognized and documented in the past years. However, the hierarchy of early cellular abnormalities leading to irreversible neuronal damage is far from being completely understood. To tackle this issue, we have generated two novel iduronate-2-sulfatase (IDS) loss of function human neuronal cell lines by means of genome editing. We show that both neuronal cell lines exhibit no enzymatic activity and increased GAG storage despite a completely different genotype. At a cellular level, they display reduced differentiation, significantly decreased LAMP1 and RAB7 protein levels, impaired lysosomal acidification and increased lipid storage. Moreover, one of the two clones is characterized by a marked decrease of the autophagic marker p62, while none of the two mutants exhibit marked oxidative stress and mitochondrial morphological changes. Based on our preliminary findings, we hypothesize that neuronal differentiation might be significantly affected by IDS functional impairment.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Ácido Idurônico , Sistemas CRISPR-Cas , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Mucopolissacaridose II/genética , Linhagem Celular
6.
Sci Rep ; 13(1): 7865, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188686

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder characterized by an accumulation of glycosaminoglycans (GAGs), including heparan sulfate, in the body. Major manifestations involve the central nerve system (CNS), skeletal deformation, and visceral manifestations. About 30% of MPS II is linked with an attenuated type of disease subtype with visceral involvement. In contrast, 70% of MPS II is associated with a severe type of disease subtype with CNS manifestations that are caused by the human iduronate-2-sulfatase (IDS)-Pro86Leu (P86L) mutation, a common missense mutation in MPS II. In this study, we reported a novel Ids-P88L MPS II mouse model, an analogous mutation to human IDS-P86L. In this mouse model, a significant impairment of IDS enzyme activity in the blood with a short lifespan was observed. Consistently, the IDS enzyme activity of the body, as assessed in the liver, kidney, spleen, lung, and heart, was significantly impaired. Conversely, the level of GAG was elevated in the body. A putative biomarker with unestablished nature termed UA-HNAc(1S) (late retention time), one of two UA-HNAc(1S) species with late retention time on reversed-phase separation,is a recently reported MPS II-specific biomarker derived from heparan sulfate with uncharacterized mechanism. Thus, we asked whether this biomarker might be elevated in our mouse model. We found a significant accumulation of this biomarker in the liver, suggesting that hepatic formation could be predominant. Finally, to examine whether gene therapy could enhance IDS enzyme activity in this model, the efficacy of the nuclease-mediated genome correction system was tested. We found a marginal elevation of IDS enzyme activity in the treated group, raising the possibility that the effect of gene correction could be assessed in this mouse model. In conclusion, we established a novel Ids-P88L MPS II mouse model that consistently recapitulates the previously reported phenotype in several mouse models.


Assuntos
Modelos Animais de Doenças , Iduronato Sulfatase , Mucopolissacaridose II , Animais , Humanos , Camundongos , Biomarcadores , Heparitina Sulfato , Iduronato Sulfatase/genética , Ácido Idurônico , Mucopolissacaridose II/genética , Mutação
7.
Mol Genet Metab ; 138(4): 107539, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37023503

RESUMO

Mucopolysaccharidosis type II (Hunter syndrome, MPS II) is an inherited X-linked recessive disease caused by deficiency of iduronate-2-sulfatase (IDS), resulting in the accumulation of the glycosaminoglycans (GAG) heparan and dermatan sulfates. Mouse models of MPS II have been used in several reports to study disease pathology and to conduct preclinical studies for current and next generation therapies. Here, we report the generation and characterization of an immunodeficient mouse model of MPS II, where CRISPR/Cas9 was employed to knock out a portion of the murine IDS gene on the NOD/SCID/Il2rγ (NSG) immunodeficient background. IDS-/- NSG mice lacked detectable IDS activity in plasma and all analyzed tissues and exhibited elevated levels of GAGs in those same tissues and in the urine. Histopathology revealed vacuolized cells in both the periphery and CNS of NSG-MPS II mice. This model recapitulates skeletal disease manifestations, such as increased zygomatic arch diameter and decreased femur length. Neurocognitive deficits in spatial memory and learning were also observed in the NSG-MPS II model. We anticipate that this new immunodeficient model will be appropriate for preclinical studies involving xenotransplantation of human cell products intended for the treatment of MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Animais , Camundongos , Mucopolissacaridose II/terapia , Camundongos Endogâmicos NOD , Camundongos SCID , Iduronato Sulfatase/genética , Glicosaminoglicanos
8.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982718

RESUMO

We report a case of an eight-year-old boy with mucopolysaccharidosis (MPS) II with atypical skin lesions of hyperpigmented streaks along Blaschko's lines. This case presented with mild symptoms of MPS such as hepatosplenomegaly, joint stiffness, and quite mild bone deformity, which was the reason for the delay in diagnosis until the age of seven years. However, he showed an intellectual disability that did not meet the diagnostic criteria for an attenuated form of MPS II. Iduronate 2-sulfatase activity was reduced. Clinical exome sequencing of DNA from peripheral blood revealed a novel pathogenic missense variant (NM_000202.8(IDS_v001):c.703C>A, p.(Pro235Thr)) in the IDS gene, which was confirmed in the mother with a heterozygous state. His brownish skin lesions differed from the Mongolian blue spots or "pebbling" of the skin that are observed in MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Masculino , Humanos , Criança , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/genética , Iduronato Sulfatase/genética , Pele , Mutação de Sentido Incorreto , Esplenomegalia
9.
Clin Genet ; 103(6): 655-662, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945845

RESUMO

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal storage disease caused by a disease-associated variant in the IDS gene, which encodes iduronate 2-sulfatase (IDS). We aimed to characterize the clinical characteristics and genotypes of the largest cohort of Chinese patients with MPS II and so gain a deeper understanding of natural disease progression. Patients with confirmed MPS II and without treatment were included. The disease was classified as severe in patients with neurological impairment, and as attenuated in patients aged >6 years without neurological impairment. Of the 201 male patients, 78.1% had severe MPS II. Cognitive regression occurred before age 6 years in 94.3% of patients. Of 122 IDS variants identified, 37 were novel. Among the large gene alteration types identified, only the frequency of IDS-IDS2 recombination was significantly higher in severe versus attenuated MPS II (P = 0.032). Some identified point variants could inform the understanding of genotype-phenotype correlations. In conclusion, this study showed that classification of the disease as attenuated should only be made in patients aged >6 years. Our findings expand the understanding of the genotype-phenotype relationship, inform the diagnostic process, and provide an indication of the likely prognosis.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Masculino , Humanos , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/genética , Estudos Retrospectivos , Iduronato Sulfatase/genética , Genótipo , Mutação
10.
Hum Gene Ther ; 34(1-2): 8-18, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541357

RESUMO

The mucopolysaccharidoses (MPS) are a group of recessively inherited conditions caused by deficiency of lysosomal enzymes essential to the catabolism of glycosaminoglycans (GAG). MPS I is caused by deficiency of the lysosomal enzyme alpha-L-iduronidase (IDUA), while MPS II is caused by a lack of iduronate-2-sulfatase (IDS). Lack of these enzymes leads to early mortality and morbidity, often including neurological deficits. Enzyme replacement therapy has markedly improved the quality of life for MPS I and MPS II affected individuals but is not effective in addressing neurologic manifestations. For MPS I, hematopoietic stem cell transplant has shown effectiveness in mitigating the progression of neurologic disease when carried out in early in life, but neurologic function is not restored in patients transplanted later in life. For both MPS I and II, gene therapy has been shown to prevent neurologic deficits in affected mice when administered early, but the effectiveness of treatment after the onset of neurologic disease manifestations has not been characterized. To test if neurocognitive function can be recovered in older animals, human IDUA or IDS-encoding AAV9 vector was administered by intracerebroventricular injection into MPS I and MPS II mice, respectively, after the development of neurologic deficit. Vector sequences were distributed throughout the brains of treated animals, associated with high levels of enzyme activity and normalized GAG storage. Two months after vector infusion, treated mice exhibited spatial navigation and learning skills that were normalized, that is, indistinguishable from those of normal unaffected mice, and significantly improved compared to untreated, affected animals. We conclude that cognitive function was restored by AAV9-mediated, central nervous system (CNS)-directed gene transfer in the murine models of MPS I and MPS II, suggesting that gene transfer may result in neurodevelopment improvements in severe MPS I and MPS II when carried out after the onset of cognitive decline.


Assuntos
Disfunção Cognitiva , Iduronato Sulfatase , Mucopolissacaridose II , Mucopolissacaridose I , Doenças do Sistema Nervoso , Humanos , Animais , Camundongos , Idoso , Qualidade de Vida , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Mucopolissacaridose I/genética , Mucopolissacaridose I/terapia , Sistema Nervoso Central/metabolismo , Iduronidase/genética , Iduronidase/metabolismo , Iduronato Sulfatase/genética , Disfunção Cognitiva/metabolismo , Glicosaminoglicanos/metabolismo , Modelos Animais de Doenças
11.
Hum Gene Ther ; 33(23-24): 1279-1292, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36226412

RESUMO

Mucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked recessive lysosomal disease caused by deficiency of iduronate-2-sulfatase (IDS). The absence of IDS results in the accumulation of the glycosaminoglycans (GAGs) heparan sulfate and dermatan sulfate. Currently, the only approved treatment option for MPS II is enzyme replacement therapy (ERT), Elaprase. However, ERT is demanding for the patient and does not ameliorate neurological manifestations of the disease. Using an IDS-deficient mouse model that phenocopies the human disease, we evaluated hematopoietic stem and progenitor cells (HSPCs) transduced with a lentiviral vector (LVV) carrying a codon-optimized human IDS coding sequence regulated by a ubiquitous MNDU3 promoter (MNDU3-IDS). Mice treated with MNDU3-IDS LVV-transduced cells showed supraphysiological levels of IDS enzyme activity in plasma, peripheral blood mononuclear cells, and in most analyzed tissues. These enzyme levels were sufficient to normalize GAG storage in analyzed tissues. Importantly, IDS levels in the brains of MNDU3-IDS-engrafted animals were restored to 10-20% than that of wild-type mice, sufficient to normalize GAG content and prevent emergence of cognitive deficit as evaluated by neurobehavioral testing. These results demonstrate the potential effectiveness of ex vivo MNDU3-IDS LVV-transduced HSPCs for treatment of MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Animais , Camundongos , Humanos , Mucopolissacaridose II/genética , Mucopolissacaridose II/terapia , Leucócitos Mononucleares , Iduronato Sulfatase/genética , Terapia de Reposição de Enzimas , Modelos Animais de Doenças , Células-Tronco Hematopoéticas
12.
Clin Chim Acta ; 537: 38-45, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257379

RESUMO

BACKGROUND: Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal storage disorder caused by various variants in the IDS gene. It is known that genomic recombinants between IDS and its homologous pseudogene IDSP1 account for a small number of patients, for whom genetic diagnosis usually relies on restriction enzyme digestion at specific loci. Nevertheless, such approach cannot reveal the impact of rearrangements on IDS transcription, which is crucial for the interpretation of the pathogenicity of rearrangement variants. METHODS: RNA sequencing (RNA-seq) was explored to analyze transcriptional alterations in four male MPS II patients who were negative for Sanger sequencing of the IDS gene. Reverse transcription-polymerase chain reaction and TA clone sequencing were used to validate RNA-seq analysis results. The IDS-IDSP1 recombinant was determined by sequencing the indicated loci in genome. RESULTS: Differential expression analysis showed the expression levels of IDS gene in patients were largely reduced compared to the healthy individuals. Differential splicing analysis revealed skipping of exons 8 and 9 of IDS, without any splice-junction defects at the genomic level. In addition, two types of fusion transcripts, IDS_EOLA1 and IDS_EOLA1-DT_EOLA1 were identified by gene fusion analysis. Sequencing of the known rearrangement alleles showed these four patients have the same type of IDS-IDSP1 recombinant. CONCLUSION: We establish an RNA-seq workflow to analyze transcriptional characteristics of IDS gene from multiple perspectives. Our study validates the diagnostic value of RNA-seq in MPS II, including the discovery of transcriptional alterations and the potential to suggest genome-level rearrangements in IDS.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Humanos , Masculino , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/genética , Sequência de Bases , Mutação , Alelos , Análise de Sequência de RNA , Iduronato Sulfatase/genética
13.
Mol Genet Metab ; 137(1-2): 92-103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35961250

RESUMO

Enzyme replacement therapy with weekly infused intravenous (IV) idursulfase is effective in treating somatic symptoms of mucopolysaccharidosis II (MPS II; Hunter syndrome). A formulation of idursulfase for intrathecal administration (idursulfase-IT) is under investigation for the treatment of neuronopathic MPS II. Here, we report 36-month data from the open-label extension (NCT02412787) of a phase 2/3, randomized, controlled study (HGT-HIT-094; NCT02055118) that assessed the safety and efficacy of monthly idursulfase-IT 10 mg in addition to weekly IV idursulfase on cognitive function in children older than 3 years with MPS II and mild-to-moderate cognitive impairment. Participants were also enrolled in this extension from a linked non-randomized sub-study of children younger than 3 years at the start of idursulfase-IT therapy. The extension safety population comprised 56 patients who received idursulfase-IT 10 mg once a month (or age-adjusted dose for sub-study patients) plus IV idursulfase (0.5 mg/kg) once a week. Idursulfase-IT was generally well tolerated over the cumulative treatment period of up to 36 months. Overall, 25.0% of patients had at least one adverse event (AE) related to idursulfase-IT; most treatment-emergent AEs were mild in severity. Of serious AEs (reported by 76.8% patients), none were considered related to idursulfase-IT treatment. There were no deaths or discontinuations owing to AEs. Secondary efficacy analyses (in patients younger than 6 years at phase 2/3 study baseline; n = 40) indicated a trend for improved Differential Ability Scale-II (DAS-II) General Conceptual Ability (GCA) scores in the early idursulfase-IT versus delayed idursulfase-IT group (treatment difference over 36 months from phase 2/3 study baseline: least-squares mean, 6.8 [90% confidence interval: -2.1, 15.8; p = 0.2064]). Post hoc analyses of DAS-II GCA scores by genotype revealed a clinically meaningful treatment effect in patients younger than 6 years with missense variants of the iduronate-2-sulfatase gene (IDS) (least-squares mean [standard error] treatment difference over 36 months, 12.3 [7.24]). These long-term data further suggest the benefits of idursulfase-IT in the treatment of neurocognitive dysfunction in some patients with MPS II. After many years of extensive review and regulatory discussions, the data were found to be insufficient to meet the evidentiary standard to support regulatory filings.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Criança , Pré-Escolar , Humanos , Recém-Nascido , Terapia de Reposição de Enzimas/efeitos adversos , Iduronato Sulfatase/efeitos adversos , Iduronato Sulfatase/genética , Ácido Idurônico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética
14.
Eur Rev Med Pharmacol Sci ; 26(14): 5115-5127, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35916809

RESUMO

OBJECTIVE: Hunter syndrome, or mucopolysaccharidosis type II (MPS II), is caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase (IDS), which is responsible for degrading heparan and dermatan sulfate. The IDS gene is located on chromosome Xq28; pathological variants in this gene mostly consist of missense mutations and small and larger deletions, which produce different phenotypes. However, there is only one record in our population concerning the molecular mechanism of this disease; a genotype-phenotype description is not available. PATIENTS AND METHODS: There were included 24 unrelated male patients; clinical features were recorded at a database, fluorometric IDS enzyme activity testing was done for each individual, followed by Sanger sequencing to identify mutations. RESULTS: The mutational spectrum was found in 16 out of 24 Mexican patients with MPS II, and its range of phenotypes was described. The most frequent variants were of the missense type. The most affected exons were exon 3 (c.275T>G, c.284_287del, c.325T>C), exon 8 (c.1035G>C, c.550G>A), exon 9 (c.1403G>C, c.1229_1229del), and exon 7 (c.979A>C; this variant has not been previously reported). Exon 5 (c.438C>T, a non-pathogenic variant) was the least frequent. It was also found that the most severely affected patients were those with large deletions (2 out of 24) [rsaIDS: IDSP1 (P164)x0, FMR1, AFF2 (P164)x2] involving genes and pseudogenes. We found 2 patients with a synonymous mutation in exon 4. CONCLUSIONS: Our results confirmed reports in the literature, since the most frequent variants were reported in exons 3 and 8. However, this result varies from one previous report in our population, which mentions large deletions and rearrangements as the most frequent alterations, since complex rearrangements were not found. According to what has been previously found, the most severely affected patients are those in which a whole gene has been deleted.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Proteína do X Frágil de Retardo Mental/genética , Humanos , Iduronato Sulfatase/genética , Ácido Idurônico , Masculino , Mucopolissacaridose II/epidemiologia , Mucopolissacaridose II/genética , Mutação , Fenótipo
15.
Mol Genet Metab ; 137(1-2): 127-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36027721

RESUMO

Two-thirds of patients with mucopolysaccharidosis II (MPS II; Hunter syndrome) have cognitive impairment. This phase 2/3, randomized, controlled, open-label, multicenter study (NCT02055118) investigated the effects of intrathecally administered idursulfase-IT on cognitive function in patients with MPS II. Children older than 3 years with MPS II and mild-to-moderate cognitive impairment (assessed by Differential Ability Scales-II [DAS-II], General Conceptual Ability [GCA] score) who had tolerated intravenous idursulfase for at least 4 months were randomly assigned (2:1) to monthly idursulfase-IT 10 mg (n = 34) via an intrathecal drug delivery device (IDDD; or by lumbar puncture) or no idursulfase-IT treatment (n = 15) for 52 weeks. All patients continued to receive weekly intravenous idursulfase 0.5 mg/kg as standard of care. Of 49 randomized patients, 47 completed the study (two patients receiving idursulfase-IT discontinued). The primary endpoint (change from baseline in DAS-II GCA score at week 52 in a linear mixed-effects model for repeated measures analysis) was not met: although there was a smaller decrease in DAS-II GCA scores with idursulfase-IT than with no idursulfase-IT at week 52, this was not significant (least-squares mean treatment difference [95% confidence interval], 3.0 [-7.3, 13.3]; p = 0.5669). Changes from baseline in Vineland Adaptive Behavioral Scales-II Adaptive Behavior Composite scores at week 52 (key secondary endpoint) were similar in the idursulfase-IT (n = 31) and no idursulfase-IT (n = 14) groups. There were trends towards a potential positive effect of idursulfase-IT across DAS-II composite, cluster, and subtest scores, notably in patients younger than 6 years at baseline. In a post hoc analysis, there was a significant (p = 0.0174), clinically meaningful difference in change from baseline in DAS-II GCA scores at week 52 with idursulfase-IT (n = 13) versus no idursulfase-IT (n = 6) among those younger than 6 years with missense iduronate-2-sulfatase gene variants. Overall, idursulfase-IT reduced cerebrospinal glycosaminoglycan levels from baseline by 72.0% at week 52. Idursulfase-IT was generally well tolerated. These data suggest potential benefits of idursulfase-IT in the treatment of cognitive impairment in some patients with neuronopathic MPS II. After many years of extensive review and regulatory discussions, the data were found to be insufficient to meet the evidentiary standard to support regulatory filings.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Mieloma Múltiplo , Criança , Pré-Escolar , Humanos , Terapia de Reposição de Enzimas/métodos , Glicosaminoglicanos , Iduronato Sulfatase/genética , Ácido Idurônico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética
16.
Stem Cell Res ; 63: 102846, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35759972

RESUMO

Mucopolysaccharidosis type II (Hunter Syndrome) is a rare X-linked inherited lysosomal storage disorder presenting a wide genetic heterogeneity. It is due to pathogenic variants in the IDS gene, causing the deficit of the lysosomal hydrolase iduronate 2-sulfatase, degrading the glycosaminoglycans (GAGs) heparan- and dermatan-sulfate. Based on the presence/absence of neurocognitive signs, commonly two forms are recognized, the severe and the attenuate ones. Here we describe a line of induced pluripotent stem cells, generated from dermal fibroblasts, carrying the mutation c.479C>T, and obtained from a patient showing an attenuated phenotype. The line will be useful to study the disease neuropathogenesis.


Assuntos
Iduronato Sulfatase , Células-Tronco Pluripotentes Induzidas , Mucopolissacaridose II , Glicosaminoglicanos , Humanos , Iduronato Sulfatase/genética , Ácido Idurônico , Células-Tronco Pluripotentes Induzidas/patologia , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Fenótipo
17.
J Pediatr ; 248: 100-107.e3, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35568060

RESUMO

OBJECTIVE: To assess the relationship between anti-Iduronate 2-sulfatase (IDS) antibodies, IDS genotypes, phenotypes and their impact in patients with enzyme replacement therapy (ERT)-treated Mucopolysaccharidosis type II. STUDY DESIGN: Dutch patients treated with ERT were analyzed in this observational cohort study. Antibody titers were determined by enzyme-linked immunosorbent assay. Neutralizing effects were measured in fibroblasts. Pharmacokinetic analysis of ERT was combined with immunoprecipitation. Urinary glycosaminoglycans were measured using mass spectrometry and dimethylmethylene blue. RESULTS: Eight of 17 patients (47%) developed anti-IDS antibodies. Three patients with the severe, neuronopathic phenotype, two of whom did not express IDS protein, showed sustained antibodies for up to 10 years of ERT. Titers of 1:5120 or greater inhibited cellular IDS uptake and/or intracellular activity in vitro. In 1 patient who was neuronopathic with a titer of 1:20 480, pharmacokinetic analysis showed that all plasma recombinant IDS was antibody bound. This finding was not the case in 2 patients who were not neuronopathic with a titer of 1:1280 or less. Patients with sustained antibody titers showed increased urinary glycosaminoglycan levels compared with patients with nonsustained or no-low titers. CONCLUSIONS: Patients with the neuronopathic form and lack of IDS protein expression were most at risk to develop sustained anti-IDS antibody titers, which inhibited IDS uptake and/or activity in vitro, and the efficacy of ERT in patients by lowering urinary glycosaminoglycan levels.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Anticorpos , Terapia de Reposição de Enzimas/métodos , Glicosaminoglicanos/urina , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/uso terapêutico , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética , Fenótipo
18.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563245

RESUMO

Mucopolysaccharidosis type II (Hunter Syndrome) is a rare, x-linked recessive, progressive, multi-system, lysosomal storage disease caused by the deficiency of iduronate-2-sulfatase (IDS), which leads to the pathological storage of glycosaminoglycans in nearly all cell types, tissues and organs. The condition is clinically heterogeneous, and most patients present with a progressive, multi-system disease in their early years. This article outlines the pathology of the disorder and current treatment strategies, including a detailed review of haematopoietic stem cell transplant outcomes for MPSII. We then discuss haematopoietic stem cell gene therapy and how this can be employed for treatment of the disorder. We consider how preclinical innovations, including novel brain-targeted techniques, can be incorporated into stem cell gene therapy approaches to mitigate the neuropathological consequences of the condition.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Iduronato Sulfatase , Mucopolissacaridose II , Encéfalo/metabolismo , Encéfalo/patologia , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/uso terapêutico , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Mucopolissacaridose II/terapia
19.
Eur J Med Genet ; 65(3): 104447, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35144014

RESUMO

MPS II is an X linked recessive lysosomal storage disorder with multi-system involvement and marked molecular heterogeneity. In this study, we explored the clinical and molecular spectrum of 144 Indian patients with MPS II from 130 unrelated families. Clinical information was collected on a predesigned clinical proforma. Sanger method was employed to sequence all the exons and exon/intron boundaries of the IDS gene. In cases where causative variation was not detected by Sanger sequencing, MLPA and RFLP were performed to identify large deletions/duplications and complex rearrangements. Cytogenetic microarray was done in one patient to see the breakpoints and extent of deletion. In one patient with no detectable likely pathogenic or pathogenic variation, whole-genome sequencing was also performed. Novel variants were systematically assessed by in silico prediction software and protein modelling. The pathogenicity of variants was established based on ACMG criteria. An attempt was also made to establish a genotype-phenotype correlation. Positive family history was present in 31% (41/130) of patients. Developmental delay and intellectual disability were the main reasons for referral. Macrocephaly, coarse facies and dysostosis were present in almost all patients. Hepatosplenomegaly, joint contractures and short stature were the characteristic features, seen in 87% (101/116), 67.8% (74/109) and 41.4% (41/99) patients respectively. Attenuated phenotype was seen in 32.6% (47/144) patients, while severe phenotype was seen in 63% (91/144) patients. The detection rate for likely pathogenic or pathogenic variants in our cohort is 95.5% (107/112) by Sanger sequencing, MLPA and RFLP. We also found two variants of unknown significance, one each by Sanger sequencing and WGS. Total of 71 variants were identified by Sanger sequencing and 29 of these variants were found to be novel. Amongst the novel variants, there was a considerable proportion (51%) of frameshift variants (15/29). Almost half of the causative variants were located in exon 3,8 and 9. A significant genotype-phenotype correlation was also noted for both known and novel variants. This information about the genotype spectrum and phenotype will be helpful for diagnostic and prognostic purposes.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Povo Asiático , Genótipo , Humanos , Iduronato Sulfatase/genética , Mucopolissacaridose II/diagnóstico , Mucopolissacaridose II/genética , Mutação , Fenótipo
20.
Nihon Yakurigaku Zasshi ; 157(1): 62-75, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-34980815

RESUMO

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal storage disease with the accumulation of glycosaminoglycans in tissues and organs throughout the body caused by dysfunction or loss of iduronate-2-sulfatase (IDS), resulting in somatic and central nervous system (CNS) disorders. Although enzyme replacement therapy (ERT) with recombinant human IDS is the current first-line therapy for MPS II, it is not effective for the CNS because intravenously administered enzyme cannot cross the blood-brain barrier (BBB) and thereby does not reach the brain parenchyma. Pabinafusp alfa, approved in March 2021 in Japan, is a recombinant fusion protein composed of human IDS and humanized anti-human transferrin receptor (hTfR) antibody, utilizing the BBB-penetrating technology "J-Brain Cargo®" established by JCR Pharmaceuticals. Nonclinical studies showed that pabinafusp alfa was distributed in the brain of hTfR knock-in mice and monkeys after intravenous administration, and dose-dependently decreased heparan sulfate (HS) glycosaminoglycan deposited in major organs including the brain of MPS II mice. Pabinafusp alfa also suppressed neurodegeneration in cerebellum and hippocampus, leading to the maintenance of spatial learning ability. Phase II/III clinical study conducted in Japan showed that pabinafusp alfa decreased HS concentration in the cerebrospinal fluid, which serves as an efficacy biomarker for central nervous symptoms, and improved or stabilized the developmental age of the patients. Moreover, pabinafusp alfa exerted comparable effects to current ERT in terms of improvement of somatic manifestations. Therefore, pabinafusp alfa is a promising therapeutic option as a BBB-penetrating enzyme for the treatment of patients with neuronopathic MPS II.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Animais , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/uso terapêutico , Camundongos , Mucopolissacaridose II/tratamento farmacológico , Mucopolissacaridose II/genética , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...